Additive effect of mouse genetic background and mutation of MITF gene on decrease of skin mast cells.
نویسندگان
چکیده
The mi transcription factor (MITF) is a basic-helix-loop-helix leucine zipper transcription factor and is encoded by mi locus. The mi/mi mutant mice showed a significant decrease of skin mast cells in C57BL/6 (B6) genetic background but not in WB genetic background. Kit ligand (KitL) is the most important growth factor for development of mast cells, and the decrease of skin mast cells in B6-mi/mi mice was attributable to the reduced expression of c-kit receptor tyrosine kinase (KIT) that is a receptor for KitL. However, the expression level of KIT in WB-mi/mi mast cells was comparable with that of B6-mi/mi mast cells, suggesting that a factor compensating the reduced expression of KIT was present in WB-mi/mi mice. By linkage analysis, such a factor was mapped on chromosome 10. The mapped position was closely located to the KitL locus. Two alternative spliced forms are known in KitL mRNA: KL-1 and KL-2. Soluble KitL, which is important for development of skin mast cells, is produced more efficiently from KL-1 mRNA than from KL-2 mRNA. The KL-1/KL-2 ratio was higher in WB-mi/mi than in B6-mi/mi mice, suggesting that the larger amount of soluble KitL may compensate for the reduced expression of KIT in WB-mi/mi mice.
منابع مشابه
Involvement of transcription factor encoded by the mi locus in the expression of c-kit receptor tyrosine kinase in cultured mast cells of mice.
The mi locus of mice encodes a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors (hereafter called MITF). Cultured mast cells of mi/mi genotype (mi/mi CMCs) did not normally respond to stem cell factor (SCF), a ligand for the c-kit receptor tyrosine kinase. The poor response of mi/mi CMCs to SCF was attributed to the deficient expression of c...
متن کاملSkin Mast Cell Promotion in Random Skin Flaps in Rats using Bone Marrow Mesenchymal Stem Cells and Amniotic Membrane
Background: Skin flap procedures are employed in plastic surgery, but failure can lead to necrosis of the flap. Studies have used bone marrow mesenchymal stem cells (BM-MSCs) to improve flap viability. BM-MSCs and acellular amniotic membrane (AAM) have been introduced as alternatives. The objective of this study was to evaluate the effect of BM-MSCs and AAM on mast cells of random skin flaps (R...
متن کاملInvolvement of transcription factor encoded by the mouse mi locus (MITF) in expression of p75 receptor of nerve growth factor in cultured mast cells of mice.
The mi locus of mice encodes a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors (hereafter called MITF). Cultured mast cells (CMCs) of mi/mi genotype showed a poor response to nerve growth factor (NGF). Addition of NGF to the suboptimal dose of interleukin-3 (IL-3) increased the plating efficiency of normal (+/+) CMCs but not mi/mi CMCs. Alt...
متن کاملInhibitory effect of the transcription factor encoded by the mutant mi microphthalmia allele on transactivation of mouse mast cell protease 7 gene.
The transcription factor encoded by the mi locus (MITF) is a transcription factor of the basic-helix-loop-helix zipper protein family. Mice of mi/mi genotype express a normal amount of abnormal MITF, whereas mice of tg/tg genotype do not express any MITFs due to the transgene insertional mutation. The effect of normal (+) and mutant (mi) MITFs on the expression of mouse mast cell protease (MMCP...
متن کاملRegulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus.
The mi locus of mice encodes a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors (hereafter called MITF). Because the expression of the mouse mast cell protease 6 (MMCP-6) gene is remarkably reduced in mast cells of mi/mi mutant mice, we investigated the effect of MITF on the transcription of the MMCP-6 gene. First, we introduced the normal (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 101 4 شماره
صفحات -
تاریخ انتشار 2003